

IGIM CMIP meeting College Park, MD October 4, 2012

# A well-meaning hydrologist walks into a climate change study...



# Estimating Climate Impacts to Water



## Selecting GCM runs: "Bookends"

- Brackets range of uncertainty
- Useful where impacts models are complex
- Downscale output from few GCMs



| 12 1 10 10 1         |                                         |
|----------------------|-----------------------------------------|
| AOGCM                | Equilibrium climate<br>sensitivity (°C) |
| 1: BCC-CM1           | n.a.                                    |
| 2: BCCR-BCM2.0       | n.a.                                    |
| 3: CCSM3             | 2.7                                     |
| 4: CGCM3.1 (T47)     | 3.4                                     |
| 5: CGCM3.1 (T63)     | 3.4                                     |
| 6: CNRM-CM3          | n.a.                                    |
| 7: CSIRO-MK3.0       | 3.1                                     |
| 6: ECHAM5/MPI-OM     | 3.4                                     |
| 9: ECHO-G            | 3.2                                     |
| 10: FGOALS-g1.0      | 2.3                                     |
| 11: GFDL-CM2.0       | 2.9                                     |
| 12: GFDL-CM2.1       | 3.4                                     |
| 13: GISS-AOM         | n.a.                                    |
| 14: GISS-EH          | 2.7                                     |
| 15: GISS-ER          | 2.7                                     |
| 16: INM-CM3.0        | 2.1                                     |
| 17: IPSL-CM4         | 4.4                                     |
| 18: MIROC3.2(hires)  | 4.3                                     |
| 19: MIROC3.2(medres) | 4.0                                     |
| 20: MRI-CGCM2.3.2    | 3.2                                     |
| 21: PCM              | 2.1                                     |
| 22: UKMO-HadCM3      | 3.3                                     |
| 23: UKMO-HadGEM1     | 4.4                                     |

#### **Bookend results for California**

- CA average annual temperatures for 3 30-year periods
- Amount of warming depends on our GHG emissions at end of 21<sup>st</sup> century.
- Summer temperatures increases (end of 21st century) vary widely:

Lower: 3.5-6 °F

Higher: 6-10.5 °F



# Downscaling: bringing global signals to regional scale

GCM scale and processes at too coarse a scale



- Resolved by:
  - -Bias Correction
  - -Spatial Downscaling





### **BCSD Method – "BC"**



- At each grid cell for "training" period, develop monthly CDFs of P, T for
  - GCM
  - Observations (aggregated to GCM scale)
  - Obs are from Maurer et al. [2002]



Use quantile mapping to ensure monthly statistics (at GCM scale) match obs

Apply same quantile mapping to "projected" period

Wood et al., BAMS 2006



# Downscaling for Hydrology Impact Modeling

- BCSD downscaling of GCM Precip and Temp
- Use to drive VIC model
- Obtain runoff, streamflow, snow



## **Projected Impacts: Loss of Snow**

- Snow water in reserve on April 1
- Change (Sacramento-San Joaquin basin, 2 GCMs, 2 emissions scenarios):
  - -12% to -42% (for 2035–2064) (up to 1 Lake Shasta)
  - -32% to -79% (for 2070–2099) (up to 2 Lake Shastas)



### Some Agency and Organizational Responses

| World Federation of Engineering Organizations (2009)                                      | To develop and implement engineering tools, policies and practices for risk assessment and adaptation of existing and new civil infrastructure to climate change |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Utility Climate Alliance (CAP, Denver Water, MWD, NYC DEP, SFPUC and others)        | Collaborating on climate change issues affecting drinking water utilities.                                                                                       |
| Federal Climate Change and Water Working Group (Reclamation, USACE, NOAA and USGS) (2008) | Helping the water management community adapt practices as climate changes                                                                                        |
| ASCE - Committee on Adaptation to a Changing Climate (2010)                               | Encourage assessments of the built and natural environment to find and quantify vulnerabilities and incorporate updated criteria into engineering practice       |
| California Climate Action Team -<br>Water-Energy Team (2005)                              | Coordinating GHG emission reduction and adaptation actions affecting energy that supports the storage, transport and delivery of water                           |
| Santa Clara Valley Water District                                                         | Climate change addressed in watershed and flood control planning                                                                                                 |

Background: Confederation Bridge in the Gulf of Saint Lawrence (http://www.cakex.org)

### **IPCC CMIP3 GCM Simulations**

- 20<sup>th</sup> century through 2100 and beyond
- >20 GCMs
- Multiple Future Emissions Scenarios



|                         | Plentrl | PDcntrl | 20C3M                     | Commit | SRESA2 | SRESA1B | SRESB1                   | 1%to2x | 1%to4x | Slabontl | 2xCO2 | AMIP |
|-------------------------|---------|---------|---------------------------|--------|--------|---------|--------------------------|--------|--------|----------|-------|------|
| BCC-CM1, China          |         | 2       | 4                         |        |        |         | 2                        | 1      | 1      |          |       | 4    |
| BCCR-BCM2.0, Norway     | 1       |         | 11                        | 1      | 1      | 1       | 1_                       | 1      |        |          |       |      |
| CCSM3, USA              | 2       | 1       | 9                         | 5      | 5      | 7       | œ<br>O                   | 1      | 1      | 1        | 1     | 1    |
| CGCM3.1(T47), Canada    | 1       |         | 5                         | 5      | 5      | 5       | 4                        | 1      | 1      | 1        | 1     |      |
| CGCM3.1(T63), Canada    | 1       |         | 1                         |        |        | 1       | 1                        | 1      |        | 1        | 1     |      |
| CNRM-CM3, France        | 1       | (       |                           | 1 (    |        | 1       | $\left( \right)$         | 1      | 1      |          |       | 1    |
| CSIRO-Mk3.0, Australia  | 2       |         | ß                         | 1      |        | 1       |                          | 1      |        | 1        | 1     |      |
| CSIRO-Mk3.5, Australia  | 1       |         | 1                         | 1      | 1      | 1       | )-(                      | 1      |        |          |       |      |
| ECHAM5/MPI-OM, Germany  | 1       |         | $\bigcirc \blacktriangle$ | 3      | 3      | 4       | )                        | 3      | 1      | 1        | 1     | 3    |
| ECHO-G, Germany/Korea   | 1       | 1       | 5                         | 4      | 3      | 3       | ${2}$                    | 1      | 1      |          |       |      |
| FGOALS-g1.0, China      | 3       |         | 3                         | 3      |        | 3       | 3                        | 3      |        |          |       | 3    |
| GFDL-CM2.0, USA         | 1       | (       | 3                         | 1      |        | 1       | $\overline{\mathcal{I}}$ | 1      | 1      | 1        | 1     |      |
| GFDL-CM2.1, USA         | 1       |         | 3                         | 1      | 1      | 1       | 1                        | 1      | 1      |          |       |      |
| GISS-AOM, USA           | 2       | (       | $\sim$ 2                  |        |        | 2       | $\bigcirc$ 2             |        |        |          |       |      |
| GISS-EH, USA            | 1       |         | 5                         |        |        | 4       |                          | 1      |        |          |       |      |
| GISS-ER, USA            | 1       |         | 9                         | 1      | 1      | 5       | 1                        | 1      | 1      | 1        | 1     | 4    |
| INGV-SXG, Italy         | 1       |         | 1                         |        | 1      | 1       |                          | 1      | 1      |          |       |      |
| INM-CM3.0, Russia       | 1       | (       | $\bigcup$                 | 1      |        | 1       |                          | 1      | 1      | 1        | 1     | 1    |
| IPSL-CM4, France        | 1       | 1       | 2                         | 1      |        | 1       |                          | 1      | 1      |          |       | 6    |
| MIROC3.2(hires), Japan  | 1       |         | 1                         |        |        | 1       | 1                        | 1      |        | 1        | 1     | 1    |
| MIROC3.2(medres), Japan | 1       |         | 3                         | 1      | 3      | 3       | 3                        | 3      | 3      | 1        | 1     | 3    |
| MRI-CGCM2.3.2, Japan    | 1       | 1       | 5                         | 1      | 5      | 5       | 5                        | 1      | 1      | 1        | 1     | 1    |
| PCM, USA                | 1       | 1       | 4                         | 3      | 4      | 4       | 4                        | 5      | 1      |          |       | 1    |
| UKMO-HadCM3, UK         | 2       | (       | 2                         | 1      |        | 1       |                          | 1      |        |          |       |      |
| UKMO-HadGEM1, UK        | 1       |         | 1                         |        | 1      | 1       |                          | 2      | 1      | 1        | 1     | 1    |





# Multi-Model Ensemble Projections for Feather River



- Increase Dec-Feb Flows+77% for A2+55% for B1
- •Decrease May-Jul -30% for A2 -21% for B1

## Impact Probabilities for Planning



## Demand for downscaled data



## Monthly downscaled data

- PCMDI CMIP3 archive of global projections
- 16 GCMs, 3 Emissions
- 112 GCM runs
- Allows quick analysis of multi-model ensembles
- gdo4.ucllnl.org/ downscaled\_cmip3\_projections







BCCA-CMIP3-Climate-daily

BCSD-CMIP3-Climate-monthly

### Use of U.S. Data Archive

- Thousands of users downloaded >20 TB of data
- Uses for Research (R), Management & Planning (MP), Education (E)





# What is missing from downscaled data archive?

| Items Requested                                              |  |  |
|--------------------------------------------------------------|--|--|
| Daily Data                                                   |  |  |
| Additional Climate Variables:                                |  |  |
| Tmax/Tmin                                                    |  |  |
| Evapotranspitation/Potential Evapotranspiration              |  |  |
| Surface Wind                                                 |  |  |
| Humidity                                                     |  |  |
| Solar Radiation                                              |  |  |
| Surface Pressure                                             |  |  |
| Cloud Cover                                                  |  |  |
| Derived Variables:                                           |  |  |
| Runoff                                                       |  |  |
| Snow                                                         |  |  |
| Soil Moisture                                                |  |  |
| Raw and intermediate data (from the downscaling process)     |  |  |
| More resources to cope with netCDF files                     |  |  |
| Data from other downscaling methods to intercompare          |  |  |
| Full historic data for 20th century (1900-current)           |  |  |
| Ability to extract watersheds (not just rectangular subsets) |  |  |
| Expanded spatial domain                                      |  |  |

### Global BCSD

- Similar to US archive, but ½-degree
- Publicly available since 2009
- Captures variability among GCMs
- www.engr.scu.edu/~emaurer/global\_data/
- Data accessed by users in all 50 States and 99 countries (last 11 months only)



Visits from 3 Nov 2011 to 27 Sep 2012





Projected Annual Precipitation Change (%) 2070-2099 Compared to 1961-1990 Baseline

Source: Girvetz et al, PloS, 2009

-50

# Most commonly requested items

| Items Requested                                              |  |  |  |
|--------------------------------------------------------------|--|--|--|
| Daily Data                                                   |  |  |  |
| Additional Climate Variables:                                |  |  |  |
| Tmax/Tmin                                                    |  |  |  |
| Evapotranspitation/Potential Evapotranspiration              |  |  |  |
| Surface Wind                                                 |  |  |  |
| Humidity                                                     |  |  |  |
| Solar Radiation                                              |  |  |  |
| Surface Pressure                                             |  |  |  |
| Cloud Cover                                                  |  |  |  |
| Derived Variables:                                           |  |  |  |
| Runoff                                                       |  |  |  |
| Snow                                                         |  |  |  |
| Soil Moisture                                                |  |  |  |
| Raw and intermediate data (from the downscaling process)     |  |  |  |
| More resources to cope with netCDF files                     |  |  |  |
| Data from other downscaling methods to intercompare          |  |  |  |
| Full historic data for 20th century (1900-current)           |  |  |  |
| Ability to extract watersheds (not just rectangular subsets) |  |  |  |
| Expanded spatial domain                                      |  |  |  |
|                                                              |  |  |  |

# Online Analysis and Download with http://ClimateWizard.org

#### Level 1



#### Level 2



#### Level 3



- Global and US data sets
- Country and US state
- boundaries defined
- Spatial and time series
- analysis
- Upload of custom shapefile

Girvetz et al., PLoS, 2009

### **Too much information?**

Little guidance in selection of: Emissions GCMs

Hundreds of downscaled GCM runs

Many impacts studies cannot use all of them

How much information is really useful?



### Selecting Specific GCM Runs

Bivariate probability plot shows correlation between  $\Delta T$ ,  $\Delta P$ 

Identify Change Range: 10 to 90 %-tile ΔT, Δ P

Select bounds based on:

- risk attitude
- interest in breadth of changes
- number of simulations desired



### Or use 5?



## Selecting GCMs for Impact Studies

- Ensemble mean provides better skill
- Little advantage to weighting GCMs according to skill
- Most important to have "ensembles of runs with enough realizations to reduce the effects of natural internal climate variability" [Pierce et al., 2009]
- Maybe 10-14 GCMs is enough?



Climate variable



# Do CMIP GCM runs capture important uncertainties?

- Perturbed physics ensembles
- Is planning for the higher probability outcomes appropriate?



| AOGCM                | Equilibrium climate<br>sensitivity (°C) |
|----------------------|-----------------------------------------|
| 1: BCC-CM1           | n.a.                                    |
| 2: BCCR-BCM2.0       | n.a.                                    |
| 3: CCSM3             | 2.7                                     |
| 4: CGCM3.1(T47)      | 3.4                                     |
| 5: CGCM3.1(T63)      | 3.4                                     |
| 6: CNRM-CM3          | n.a.                                    |
| 7: CSIRO-MK3.0       | 3.1                                     |
| 8: ECHAM5/MPI-OM     | 3.4                                     |
| 9: ECHO-G            | 3.2                                     |
| 10: FGOALS-g1.0      | 2.3                                     |
| 11: GFDL-CM2.0       | 2.9                                     |
| 12: GFDL-CM2.1       | 3.4                                     |
| 13: GISS-AOM         | n.a.                                    |
| 14: GISS-EH          | 2.7                                     |
| 15: GISS-ER          | 2.7                                     |
| 16: INM-CM3.0        | 2.1                                     |
| 17: IPSL-CM4         | 4.4                                     |
| 18: MIROC3.2(hires)  | 4.3                                     |
| 19: MIROC3.2(medres) | 4.0                                     |
| 20: MRI-CGCM2.3.2    | 3.2                                     |
| 21: PCM              | 2.1                                     |
| 22: UKMO-HadCM3      | 3.3                                     |
| 23: UKMO-HadGEM1     | 4.4                                     |

## **Downscaling for Extreme Events**

- Some impacts due to changes at short time scales
  - Heat waves
  - Flood events
- Daily GCM output limited for CMIP3, more plentiful for CMIP5
- Downscaling adapted for modeling extremes





# Most commonly requested items

| Items Requested                                              |  |  |
|--------------------------------------------------------------|--|--|
| Daily Data                                                   |  |  |
| Additional Climate Variables:                                |  |  |
| Tmax/Tmin                                                    |  |  |
| Evapotranspitation/Potential Evapotranspiration              |  |  |
| Surface Wind                                                 |  |  |
| Humidity                                                     |  |  |
| Solar Radiation                                              |  |  |
| Surface Pressure                                             |  |  |
| Cloud Cover                                                  |  |  |
| Derived Variables:                                           |  |  |
| Runoff                                                       |  |  |
| Snow                                                         |  |  |
| Soil Moisture                                                |  |  |
| Raw and intermediate data (from the downscaling process)     |  |  |
| More resources to cope with netCDF files                     |  |  |
| Data from other downscaling methods to intercompare          |  |  |
| Full historic data for 20th century (1900-current)           |  |  |
| Ability to extract watersheds (not just rectangular subsets) |  |  |
| Expanded spatial domain                                      |  |  |
| Expanded spatial domain                                      |  |  |

## **Constructed Analogues**

Library of previously observed anomaly patterns:





Coarse resolution analogue:



Analogue is linear combination of best 30 observed

Given daily

**GCM** anomaly



Apply analogue to fine-resolution climatology

# Sustainable Design in a Dynamic Environment

- Declining return periods for extreme events
- A solution: Overdesign for present





# What is missing from downscaled data original archive?



## Archive expansion (still CMIP3)

Daily downscaled data

Hydrology model output





### Is bias correction effective?



Biases vary in time, space, at quantiles

- On average, bias correction works
- But for small ensembles maybe not



### CMIP5 additions to archive

- Monthly downscaling of Tmax, Tmin, Precip for:
  - 84 historical GCM runs
  - 237 projections (total for 4 RCPs)
- Daily downscaling with two techniques:
  - 46 historical runs
  - 147 projections (total for 4 RCPs)
- Hydrology model output for 100 runs

# Does CMIP3 or CMIP5 choice matter?

- Ensemble average changes comparable
- RCP8.5 and SRES A2 comparable





## **Model Spread**

 Differences in model spread between CMIP3 and CMIP5 varies by location





### Information overload overload

- If 112 GCM projections wasn't too much, is 500?
- Have we progressed in providing policymakers with information for...
  - Selecting concentration pathways
  - Assembling an ensemble of GCMs
  - Using appropriate downscaling
  - Interpreting results
- Can we (conditionally) recommend anything?

